Sceptre Press

Press Releases and Business to Business Portal
Manufacturing

Nanocrystalline transformer core manufacturer and supplier right now

Best nanocrystalline cores factory: Nanocrystalline cores are advanced materials used in the construction of transformers and inductors. The nanocrystalline transformer core is made up of tiny crystalline grains, typically measuring just a few nanometers in size. The small grain structure allows for superior magnetic properties, including high permeability and low coercivity. This results in reduced core losses and improved efficiency, making nanocrystalline cores an ideal choice for high-frequency applications where minimizing energy loss is crucial. The excellent thermal stability of nanocrystalline magnetic core ensures consistent performance over a wide range of temperatures. See many more info at nanocrystalline cores.

Application field of nano magnetic core: Noise is the main circuit interference source in many power electronic devices. Various filter elements must be used to reduce noise. As the main component of differential mode inductance, magnetic particle core plays a key role in the filter. In order to obtain better filtering effect, the magnetic particle core material is required to have the following performance characteristics: high saturated magnetic induction, wide constant magnetic conductivity, good frequency characteristics, good AC / DC superposition characteristics and low loss characteristics. According to the above requirements, soft magnetic materials for inductance such as iron powder core, notched amorphous alloy core and iron nickel aluminum powder core (MPP powder core) have been developed successively. These materials have played their respective advantages and roles under different application conditions.

Amorphous nanocrystalline alloys are competing with soft ferrite in the field of medium and high frequency. In 10kHz to 50KHz electronic transformer, the working magnetic flux density of iron-based nanocrystalline alloy can reach 0.5T and the loss P0.05 5 / 20K ≤ 25W / kg, so it has obvious advantages in high-power electronic transformer. In 50 kHz to 100 kHz electronic transformer, the loss of iron-based nanocrystalline alloy is P0.05 2 / 100k is 30 ~ 75W / kg, Fe based amorphous alloy P0.05 2 / 100k is 30W / kg, which can replace some ferrite markets.

Transmart amorphous core manufacturer & supplier is mainly engaged in the production and sales of amorphous core materials. The amorphous core transformer is one of Transmart Industrial’s multiple product series.Transmart Industrial’s amorphous C-core is manufactured in strict accordance with relevant national standards. Every detail matters in the production. Strict cost control promotes the production of high-quality and priced-low product. Such a amorphous transformer is up to customers’ needs for a highly cost-effective product.

The common mode inductor using nanocrystalline core material can well suppress the peak voltage, protect sensitive components, and reduce the motor shaft voltage. Because of the unique characteristics of nanocrystalline core, it has been well used in some high-power system industries. Electric energy meter, power meter, ammeter, electric measuring equipment and other instrument fields. Various power current transformers in power transmission and distribution monitoring system. Leakage protection, relay protection, servo motor protection, fire monitoring, etc Current and voltage data sampling, etc. See extra info on transmartcore.com.

Since silicon steel has the above advantages, why not use the whole silicon steel as the iron core and process it into a sheet? This is because the sheet iron core can reduce another iron loss – “eddy current loss”. When the transformer works, there is alternating current in the coil, and the magnetic flux generated by it is of course alternating. This changing magnetic flux produces an induced current in the iron core. The induced current generated in the iron core flows in a ring in a plane perpendicular to the magnetic flux direction, so it is called eddy current. Eddy current losses also heat the core. In order to reduce the eddy current loss, the iron core of the transformer is stacked with silicon steel sheets insulated from each other, so that the eddy current passes through a small section in the narrow and long circuit, so as to increase the resistance on the eddy current path; At the same time, the silicon in silicon steel increases the resistivity of the material and reduces the eddy current.